#1 What is the Naive Bayes Algorithm?

开启中
Gurpreetsingh11 个月前创建 · 0 条评论

What is the Naive Bayes Algorithm?

Bayes Theorem The Bayes Theorem is used to calculate conditional probability. The formula below can be used to determine the likelihood of an event occurring if event B has already occurred. Data Science Course in Pune

P(A| = (P(B|A) * P(A)) / P(

During the initial training phase, an algorithm is created using the labeled data. Assume we have a dataset that has N instances and M attributes. The class label represents a target variable.

Prior probabilities (P(C),), The algorithm calculates P(C), which is the prior probability of a random instance that belongs to a specific class.

(C) each feature Fi with a class label. This is the probability of a particular feature being present if an instance belongs to a specific class.

Data Science Courses in Pune

Bayes’ theorem is used to determine the class of unknown instances.

P(C|X) = (P(X|C) * P(C)) / P(X)

Multiplication of the probability (P(xi), by the prior probability (P(C)).

Predicting Class: The algorithm chooses the class label that has the highest posterior probabilities based on a given example.

What is the Naive Bayes Algorithm? Bayes Theorem The Bayes Theorem is used to calculate conditional probability. The formula below can be used to determine the likelihood of an event occurring if event B has already occurred. [Data Science Course in Pune](https://www.sevenmentor.com/data-science-course-in-pune.php) P(A| = (P(B|A) * P(A)) / P( During the initial training phase, an algorithm is created using the labeled data. Assume we have a dataset that has N instances and M attributes. The class label represents a target variable. Prior probabilities (P(C),), The algorithm calculates P(C), which is the prior probability of a random instance that belongs to a specific class. (C) each feature Fi with a class label. This is the probability of a particular feature being present if an instance belongs to a specific class. Data Science Courses in Pune Bayes' theorem is used to determine the class of unknown instances. P(C|X) = (P(X|C) * P(C)) / P(X) Multiplication of the probability (P(xi), by the prior probability (P(C)). Predicting Class: The algorithm chooses the class label that has the highest posterior probabilities based on a given example.
登录 并参与到对话中。
未选择标签
未选择里程碑
未指派成员
1 名参与者
通知
到期时间

未设置到期时间。

依赖工单

此工单当前没有任何依赖。

正在加载...
这个人很懒,什么都没留下。